Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Environ Microbiol ; 26(4): e16604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561900

RESUMO

Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.


Assuntos
Afídeos , Inseticidas , Pseudomonas fluorescens , Animais , Afídeos/genética , Pseudomonas fluorescens/genética , Peptídeo Hidrolases , Inseticidas/farmacologia , Perfilação da Expressão Gênica
2.
Mol Plant Pathol ; 25(4): e13451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590135

RESUMO

When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.


Assuntos
Prunus avium , Prunus , Virulência/genética , Pseudomonas syringae , Prunus avium/metabolismo , Frutas/metabolismo , Mutação/genética , Prunus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Theor Appl Genet ; 137(3): 73, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451354

RESUMO

KEY MESSAGE: The NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars. The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar 'Robigus'. The primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance to yellow rust infection (Yr) than 'Robigus'. The NIAB_WW_SHW_NAM population was genotyped using a single nucleotide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.


Assuntos
Poaceae , Triticum , Triticum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Genótipo
4.
Nat Clim Chang ; 14(3): 282-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481421

RESUMO

Wetland methane (CH4) emissions over the Boreal-Arctic region are vulnerable to climate change and linked to climate feedbacks, yet understanding of their long-term dynamics remains uncertain. Here, we upscaled and analysed two decades (2002-2021) of Boreal-Arctic wetland CH4 emissions, representing an unprecedented compilation of eddy covariance and chamber observations. We found a robust increasing trend of CH4 emissions (+8.9%) with strong inter-annual variability. The majority of emission increases occurred in early summer (June and July) and were mainly driven by warming (52.3%) and ecosystem productivity (40.7%). Moreover, a 2 °C temperature anomaly in 2016 led to the highest recorded annual CH4 emissions (22.3 Tg CH4 yr-1) over this region, driven primarily by high emissions over Western Siberian lowlands. However, current-generation models from the Global Carbon Project failed to capture the emission magnitude and trend, and may bias the estimates in future wetland CH4 emission driven by amplified Boreal-Arctic warming and greening.

6.
Nat Commun ; 15(1): 806, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280879

RESUMO

Urban greenspaces continue to grow with global urbanization. The global distribution and stock of soil organic carbon (SOC) in urban greenspaces remain largely undescribed and missing in global carbon (C) budgets. Here, we synthesize data of 420 observations from 257 cities in 52 countries to evaluate the global pattern of surface SOC density (0-20 cm depth) in urban greenspaces. Surface SOC density in urban greenspaces increases significantly at higher latitudes and decreases significantly with higher mean annual temperature, stronger temperature and precipitation seasonality, as well as lower urban greenness index. By mapping surface SOC density using a random forest model, we estimate an average SOC density of 55.2 (51.9-58.6) Mg C ha-1 and a SOC stock of 1.46 (1.37-1.54) Pg C in global urban greenspaces. Our findings present a comprehensive assessment of SOC in global urban greenspaces and provide a baseline for future urban soil C assessment under continuing urbanization.

7.
Glob Chang Biol ; 30(1): e17131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273508

RESUMO

Climate warming is expected to increase global methane (CH4 ) emissions from wetland ecosystems. Although in situ eddy covariance (EC) measurements at ecosystem scales can potentially detect CH4 flux changes, most EC systems have only a few years of data collected, so temporal trends in CH4 remain uncertain. Here, we use established drivers to hindcast changes in CH4 fluxes (FCH4 ) since the early 1980s. We trained a machine learning (ML) model on CH4 flux measurements from 22 [methane-producing sites] in wetland, upland, and lake sites of the FLUXNET-CH4 database with at least two full years of measurements across temperate and boreal biomes. The gradient boosting decision tree ML model then hindcasted daily FCH4 over 1981-2018 using meteorological reanalysis data. We found that, mainly driven by rising temperature, half of the sites (n = 11) showed significant increases in annual, seasonal, and extreme FCH4 , with increases in FCH4 of ca. 10% or higher found in the fall from 1981-1989 to 2010-2018. The annual trends were driven by increases during summer and fall, particularly at high-CH4 -emitting fen sites dominated by aerenchymatous plants. We also found that the distribution of days of extremely high FCH4 (defined according to the 95th percentile of the daily FCH4 values over a reference period) have become more frequent during the last four decades and currently account for 10-40% of the total seasonal fluxes. The share of extreme FCH4 days in the total seasonal fluxes was greatest in winter for boreal/taiga sites and in spring for temperate sites, which highlights the increasing importance of the non-growing seasons in annual budgets. Our results shed light on the effects of climate warming on wetlands, which appears to be extending the CH4 emission seasons and boosting extreme emissions.


Assuntos
Ecossistema , Áreas Alagadas , Estações do Ano , Metano , Dióxido de Carbono
8.
Plant Phenomics ; 5: 0128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148766

RESUMO

Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.

9.
Proc Natl Acad Sci U S A ; 120(48): e2308342120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983492

RESUMO

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Camundongos , Masculino , Feminino , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Inflamação/patologia , Síndrome do Desconforto Respiratório/patologia , Redução de Peso , Camundongos Transgênicos , Modelos Animais de Doenças
10.
Nat Commun ; 14(1): 6434, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852971

RESUMO

Climate, technologies, and socio-economic changes will influence future building energy use in cities. However, current low-resolution regional and state-level analyses are insufficient to reliably assist city-level decision-making. Here we estimate mid-century hourly building energy consumption in 277 U.S. urban areas using a bottom-up approach. The projected future climate change results in heterogeneous changes in energy use intensity (EUI) among urban areas, particularly under higher warming scenarios, with on average 10.1-37.7% increases in the frequency of peak building electricity EUI but over 110% increases in some cities. For each 1 °C of warming, the mean city-scale space-conditioning EUI experiences an average increase/decrease of ~14%/ ~ 10% for space cooling/heating. Heterogeneous city-scale building source energy use changes are primarily driven by population and power sector changes, on average ranging from -9% to 40% with consistent south-north gradients under different scenarios. Across the scenarios considered here, the changes in city-scale building source energy use, when averaged over all urban areas, are as follows: -2.5% to -2.0% due to climate change, 7.3% to 52.2% due to population growth, and -17.1% to -8.9% due to power sector decarbonization. Our findings underscore the necessity of considering intercity heterogeneity when developing sustainable and resilient urban energy systems.

11.
Plant Phenomics ; 5: 0105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850120

RESUMO

Rice (Oryza sativa) is an essential stable food for many rice consumption nations in the world and, thus, the importance to improve its yield production under global climate changes. To evaluate different rice varieties' yield performance, key yield-related traits such as panicle number per unit area (PNpM2) are key indicators, which have attracted much attention by many plant research groups. Nevertheless, it is still challenging to conduct large-scale screening of rice panicles to quantify the PNpM2 trait due to complex field conditions, a large variation of rice cultivars, and their panicle morphological features. Here, we present Panicle-Cloud, an open and artificial intelligence (AI)-powered cloud computing platform that is capable of quantifying rice panicles from drone-collected imagery. To facilitate the development of AI-powered detection models, we first established an open diverse rice panicle detection dataset that was annotated by a group of rice specialists; then, we integrated several state-of-the-art deep learning models (including a preferred model called Panicle-AI) into the Panicle-Cloud platform, so that nonexpert users could select a pretrained model to detect rice panicles from their own aerial images. We trialed the AI models with images collected at different attitudes and growth stages, through which the right timing and preferred image resolutions for phenotyping rice panicles in the field were identified. Then, we applied the platform in a 2-season rice breeding trial to valid its biological relevance and classified yield production using the platform-derived PNpM2 trait from hundreds of rice varieties. Through correlation analysis between computational analysis and manual scoring, we found that the platform could quantify the PNpM2 trait reliably, based on which yield production was classified with high accuracy. Hence, we trust that our work demonstrates a valuable advance in phenotyping the PNpM2 trait in rice, which provides a useful toolkit to enable rice breeders to screen and select desired rice varieties under field conditions.

12.
PLoS One ; 18(10): e0292368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792852

RESUMO

Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).


Assuntos
Células Epiteliais , Tonsilite , Feminino , Humanos , Células Epiteliais/metabolismo , Tonsila Palatina , Epitélio , Matriz Extracelular/metabolismo , Interferons/metabolismo
13.
Environ Microbiol ; 25(12): 3502-3511, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658725

RESUMO

Pseudomonas syringae is a bacterial complex that is widespread through a range of environments, typically associated with plants where it can be pathogenic, but also found in non-plant environments such as clouds, precipitation, and surface waters. Understanding its distribution within the environment, and the habitats it occupies, is important for examining its evolution and understanding behaviours. After a recent study found P. syringae living among a range of vascular plant species in Iceland, we questioned whether lichens could harbour P. syringae. Sixteen different species of lichens were sampled all over Iceland, but only one lichen genus, Peltigera, was found to consistently harbour P. syringae. Phylogenetic analyses of P. syringae from 10 sampling points where lichen, tracheophyte, and/or moss were simultaneously collected showed significant differences between sampling points, but not between different plants and lichens from the same point. Furthermore, while there were similarities in the P. syringae population in tracheophytes and Peltigera, the densities in Peltigera thalli were lower than in moss and tracheophyte samples. This discovery suggests P. syringae strains can localize and survive in organisms beyond higher plants, and thus reveals opportunities for studying their influence on P. syringae evolution.


Assuntos
Briófitas , Líquens , Filogenia , Pseudomonas syringae/genética , Plantas
14.
Infect Genet Evol ; 113: 105486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541538

RESUMO

Plant pathogenic Pseudomonas species use multiple classes of toxins and virulence factors during host infection. The genes encoding these pathogenicity factors are often located on plasmids and other mobile genetic elements, suggesting that they are acquired through horizontal gene transfer to confer an evolutionary advantage for successful adaptation to host infection. However, the genetic rearrangements that have led to mobilization of the pathogenicity genes are not fully understood. In this study, we have sequenced and analyzed the complete genome sequences of four Pseudomonas amygdali pv. aesculi (Pae), which infect European horse chestnut trees (Aesculus hippocastanum) and belong to phylogroup 3 of the P. syringae species complex. The four investigated genomes contain six groups of plasmids that all encode pathogenicity factors. Effector genes were found to be mostly associated with insertion sequence elements, suggesting that virulence genes are generally mobilized and potentially undergo horizontal gene transfer after transfer to a conjugative plasmid. We show that the biosynthetic gene cluster encoding the phytotoxin coronatine was recently transferred from a chromosomal location to a mobilizable plasmid that subsequently formed a co-integrate with a conjugative plasmid.


Assuntos
Pseudomonas , Fatores de Virulência , Pseudomonas/genética , Pseudomonas/metabolismo , Plasmídeos/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Exp Lung Res ; 49(1): 152-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584484

RESUMO

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Inflamação , Citocinas
16.
Front Plant Sci ; 14: 1219983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404534

RESUMO

As one of the most consumed stable foods around the world, wheat plays a crucial role in ensuring global food security. The ability to quantify key yield components under complex field conditions can help breeders and researchers assess wheat's yield performance effectively. Nevertheless, it is still challenging to conduct large-scale phenotyping to analyse canopy-level wheat spikes and relevant performance traits, in the field and in an automated manner. Here, we present CropQuant-Air, an AI-powered software system that combines state-of-the-art deep learning (DL) models and image processing algorithms to enable the detection of wheat spikes and phenotypic analysis using wheat canopy images acquired by low-cost drones. The system includes the YOLACT-Plot model for plot segmentation, an optimised YOLOv7 model for quantifying the spike number per m2 (SNpM2) trait, and performance-related trait analysis using spectral and texture features at the canopy level. Besides using our labelled dataset for model training, we also employed the Global Wheat Head Detection dataset to incorporate varietal features into the DL models, facilitating us to perform reliable yield-based analysis from hundreds of varieties selected from main wheat production regions in China. Finally, we employed the SNpM2 and performance traits to develop a yield classification model using the Extreme Gradient Boosting (XGBoost) ensemble and obtained significant positive correlations between the computational analysis results and manual scoring, indicating the reliability of CropQuant-Air. To ensure that our work could reach wider researchers, we created a graphical user interface for CropQuant-Air, so that non-expert users could readily use our work. We believe that our work represents valuable advances in yield-based field phenotyping and phenotypic analysis, providing useful and reliable toolkits to enable breeders, researchers, growers, and farmers to assess crop-yield performance in a cost-effective approach.

17.
Environ Sci Technol ; 57(26): 9653-9663, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37319002

RESUMO

Exposure pathways to the carcinogen benzene are well-established from tobacco smoke, oil and gas development, refining, gasoline pumping, and gasoline and diesel combustion. Combustion has also been linked to the formation of nitrogen dioxide, carbon monoxide, and formaldehyde indoors from gas stoves. To our knowledge, however, no research has quantified the formation of benzene indoors from gas combustion by stoves. Across 87 homes in California and Colorado, natural gas and propane combustion emitted detectable and repeatable levels of benzene that in some homes raised indoor benzene concentrations above well-established health benchmarks. Mean benzene emissions from gas and propane burners on high and ovens set to 350 °F ranged from 2.8 to 6.5 µg min-1, 10 to 25 times higher than emissions from electric coil and radiant alternatives; neither induction stoves nor the food being cooked emitted detectable benzene. Benzene produced by gas and propane stoves also migrated throughout homes, in some cases elevating bedroom benzene concentrations above chronic health benchmarks for hours after the stove was turned off. Combustion of gas and propane from stoves may be a substantial benzene exposure pathway and can reduce indoor air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Benzeno/análise , Propano , Gasolina , Produtos Domésticos , Culinária , Poluentes Atmosféricos/análise
18.
Glob Chang Biol ; 29(15): 4298-4312, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190869

RESUMO

The recent rise in atmospheric methane (CH4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year-1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.


Assuntos
Ecossistema , Áreas Alagadas , Metano/análise , Mudança Climática , Previsões , Dióxido de Carbono
19.
Front Genet ; 14: 1164935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229190

RESUMO

Genomic selection has recently become an established part of breeding strategies in cereals. However, a limitation of linear genomic prediction models for complex traits such as yield is that these are unable to accommodate Genotype by Environment effects, which are commonly observed over trials on multiple locations. In this study, we investigated how this environmental variation can be captured by the collection of a large number of phenomic markers using high-throughput field phenotyping and whether it can increase GS prediction accuracy. For this purpose, 44 winter wheat (Triticum aestivum L.) elite populations, comprising 2,994 lines, were grown on two sites over 2 years, to approximate the size of trials in a practical breeding programme. At various growth stages, remote sensing data from multi- and hyperspectral cameras, as well as traditional ground-based visual crop assessment scores, were collected with approximately 100 different data variables collected per plot. The predictive power for grain yield was tested for the various data types, with or without genome-wide marker data sets. Models using phenomic traits alone had a greater predictive value (R2 = 0.39-0.47) than genomic data (approximately R2 = 0.1). The average improvement in predictive power by combining trait and marker data was 6%-12% over the best phenomic-only model, and performed best when data from one full location was used to predict the yield on an entire second location. The results suggest that genetic gain in breeding programmes can be increased by utilisation of large numbers of phenotypic variables using remote sensing in field trials, although at what stage of the breeding cycle phenomic selection could be most profitably applied remains to be answered.

20.
Nat Commun ; 14(1): 1975, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031202

RESUMO

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Assuntos
Carcinoma de Células Escamosas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transcriptoma , Epitélio/metabolismo , Queratinócitos/metabolismo , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Proteínas Oncogênicas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...